

**License No.** 800025015 FL License # CMTL-0003 CLIA No. 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



### **Certificate of Analysis**

**Compliance Test** 

#### **Trulieve**

6749 Ben Bostic Rd Quincy, FL 32351

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653

Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

**Sampling Date:** 2021-05-06 **Lab Batch Date:** 2021-05-06 Completion Date: 2021-05-14 Seed to Sale # 29355\_0000398345 Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida

Initial Gross Weight: 631.000 g Net Weight: 67.200 g

Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Number of Units: 18 Net Weight per Unit: 3733.333 mg





Potency **Tested** 









**Tested** (HPLC/LCMS)



**Water Activity Passed** 



Contaminant Load **Passed** 

**Heavy Metals** 

**Passed** 



Pathogenic

Not Tested

Microbiology











#### Potency - 11

Specimen Weight: 202.970 mg

| Sample Prepared By: | 1098 Date: 2      | 021-05-06 13:36:17 | Sample A   | nalvzed Bv: 1151 | Date: 2021-05-06 17:30       | 5:17 |
|---------------------|-------------------|--------------------|------------|------------------|------------------------------|------|
| CBC                 | 150.000           | 0.000018           | 0.001      |                  | <loq< td=""><td></td></loq<> |      |
| CBN                 | 150.000           | 0.000014           | 0.001      |                  | <loq< td=""><td></td></loq<> |      |
| Delta-8 THC         | 150.000           | 0.000026           | 0.001      |                  | <l0q< td=""><td></td></l0q<> |      |
| CBD                 | 150.000           | 0.000054           | 0.001      |                  | <loq< td=""><td></td></loq<> |      |
| CBDV                | 150.000           | 0.000065           | 0.001      |                  | <loq< td=""><td></td></loq<> |      |
| THCV                | 150.000           | 0.000007           | 0.001      |                  | <loq< td=""><td></td></loq<> |      |
| CBDA                | 150.000           | 0.00001            | 0.001      |                  | <loq< td=""><td></td></loq<> |      |
| CBG                 | 150.000           | 0.000248           | 0.001      | 1.630            | 0.163                        |      |
| Delta-9 THC         | 150.000           | 0.000013           | 0.001      | 3.710            | 0.371                        |      |
| CBGA                | 150.000           | 0.00008            | 0.001      | 14.600           | 1.460                        |      |
| THCA-A              | 150.000           | 0.000032           | 0.001      | 287.000          | 28.700                       |      |
| Analyte             | Dilution<br>(1:n) | LOD<br>(%)         | LOQ<br>(%) | Result<br>(mg/g) | (%)                          |      |

Date: 2021-05-10 22:11:32 Lab Batch #: AABH653-174 Date: 2021-05-10 22:11:32

### **Potency Summary**

| Total THC 25.541%  | Total CBD<br>None Detected |
|--------------------|----------------------------|
| Total CBG          | Total CBN                  |
| 1.443%             | None Detected              |
| Other Cannabinoids | Total Cannabinoids         |
| None Detected      | 26.984%                    |

#### **Terpenes Summary**

|                                                                                                                                                                                     |                                                                                                 | •                                                                                               | • |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---|
| Analyte                                                                                                                                                                             | Result (mg                                                                                      | /ml) (%)                                                                                        |   |
| trans-Caryophyllene<br>alpha-Bisabolol<br>(R)(+)-Limonene<br>Linalool<br>alpha-Humulene<br>beta-Myrcene<br>Terpineol<br>alpha-Pinene<br>Fenchyl Alcohol<br>beta-Pinene<br>Farnesene | 6.201<br>3.712<br>3.432<br>1.645<br>1.607<br>1.444<br>1.117<br>0.962<br>0.875<br>0.846<br>0.731 | 0.62%<br>0.371%<br>0.343%<br>0.164%<br>0.161%<br>0.144%<br>0.112%<br>0.096%<br>0.087%<br>0.085% |   |
|                                                                                                                                                                                     |                                                                                                 |                                                                                                 |   |

Total Terpenes: 2.256%

Detailed Terpenes Analysis is on the following page

Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Xueli Gao Ph.D., DABT





Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV+A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV+A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.





License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



### **Certificate of Analysis**

**Compliance Test** 

**Trulieve** 6749 Ben Bostic Rd Quincy, FL 32351

Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

Seed to Sale # 29355\_0000398345 Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida

Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653

Sampling Date: 2021-05-06 Lab Batch Date: 2021-05-06 Completion Date: 2021-05-14

Initial Gross Weight: 631.000 g Net Weight: 67.200 g

Number of Units: 18 Net Weight per Unit: 3733.333 mg



#### **Terpenes - FL**

Specimen Weight: 202.970 mg

**Tested** (GC/GCMS)

| Dilution Factor: 750.000                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                       |                                           |                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|
| Analyte                                                                                                                                                                                                                                                    | Dilution<br>(1:n)                                                                                                                                                                       | LOQ<br>(%)                                                                                                                                   | Result<br>(mg/g)                                   | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyte                                                                                                                                                                                                                       | Dilution<br>(1:n)                                                                                                                                               | LOQ<br>(%)                                                                                                                                            | Result<br>(mg/g)                          | (%)                                                              |
| trans-Caryophyllene (R)-(+)-Limonene alpha-Humulene Terpineol Fenchyl Alcohol Farnesene Isopulegol (+)-Cedrol Sabinene Hexahydrothymol trans-Nerolidol Fenchone Geranyl acetate Gamma-Terpinene cis-Nerolidol Camphors Borneol alpha-Phellandrene 3-Carene | 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 6.201<br>3.432<br>1.607<br>1.117<br>0.875<br>0.731 | 0.620<br>0.343<br>0.161<br>0.112<br>0.087<br>0.073<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq<br><loq< td=""><td>alpha-Bisabolol Linalool beta-Myrcene alpha-Pinene beta-Pinene Ocimene Nerol Pulegone Sabinene Hydrate Terpinolene Isoborneol Guaiol Geraniol Eucalyptol Caryophyllene oxide Camphene alpha-Terpinene alpha-Cedrene Valencene</td><td>750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000</td><td>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.014<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02<br/>0.02</td><td>3.712<br/>1.645<br/>1.444<br/>0.962<br/>0.846</td><td>0.371 0.164 0.144 0.096 0.085 <loq <loq="" <loq<="" td=""></loq></td></loq<></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br></loq<br> | alpha-Bisabolol Linalool beta-Myrcene alpha-Pinene beta-Pinene Ocimene Nerol Pulegone Sabinene Hydrate Terpinolene Isoborneol Guaiol Geraniol Eucalyptol Caryophyllene oxide Camphene alpha-Terpinene alpha-Cedrene Valencene | 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 750.000 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.014<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 3.712<br>1.645<br>1.444<br>0.962<br>0.846 | 0.371 0.164 0.144 0.096 0.085 <loq <loq="" <loq<="" td=""></loq> |
| Sample Prepared By: 1027                                                                                                                                                                                                                                   | Date: 2021-05-07 17:01:02                                                                                                                                                               | Sample An                                                                                                                                    | alyzed By: 1168                                    | Date: 2021-05-07 22:54:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                                                 |                                                                                                                                                       |                                           |                                                                  |

Total Terpenes: 2.256%

Xueli Gao Ph D DART  $\mathcal{O}_{\mathcal{C}}$ Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

drul

Batch Reviewed By: 1156





Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.





**CLIA No.** 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



## **Certificate of Analysis**

**Compliance Test** 

Trulieve 6749 Ben Bostic Rd Quincy, FL 32351 Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653 Sampling Date: 2021-05-06 Lab Batch Date: 2021-05-06 Completion Date: 2021-05-14

Lab Batch #: AABH653-4

Initial Gross Weight: 631.000 g Net Weight: 67.200 g

Seed to Sale # 29355\_0000398345

Number of Units: 18 Net Weight per Unit: 3733.333 mg

H

#### **Heavy Metals**

Specimen Weight: 251.840 mg

Passed (ICP-MS)

| ì | lut | ion | Fact | tor: | 2.0 | 00 |
|---|-----|-----|------|------|-----|----|
|   |     |     |      |      |     |    |

| Analyte                  | Dilution<br>(1:n)         | LOQ<br>(ppb)            | Action Level<br>(ppb)  | Result<br>(ppb)                                                                                            | Analyte      | Dilution<br>(1:n) | LOQ<br>(ppb) | Action Level<br>(ppb) | Result<br>(ppb)     |
|--------------------------|---------------------------|-------------------------|------------------------|------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|-----------------------|---------------------|
| Arsenic (As)             | 1.000                     | 100                     | 200                    | <l0q< th=""><th>Cadmium (Cd)</th><th>1.000</th><th>100</th><th>200</th><th><l0q< th=""></l0q<></th></l0q<> | Cadmium (Cd) | 1.000             | 100          | 200                   | <l0q< th=""></l0q<> |
| Lead (Pb)                | 1.000                     | 100                     | 500                    | <l0q< th=""><th>Mercury (Hg)</th><th>1.000</th><th>100</th><th>200</th><th><loq< th=""></loq<></th></l0q<> | Mercury (Hg) | 1.000             | 100          | 200                   | <loq< th=""></loq<> |
| Sample Prepared By: 1145 | Date: 2021-05-05 21:36:33 | Sample Analyzed By: 114 | 15 <b>Date:</b> 2021-0 | 5-05 01:36:33                                                                                              |              |                   |              |                       |                     |

Date: 2021-05-07 21:27:27

Datcii Review

Mycotoxins

Passed (LCMS)

Specimen Weight: 157.460 mg

Date: 2021-05-07 21:27:27

Dilution Factor: 9.526

| Analyte      | Dilution<br>(1:n) | LOQ<br>(ppb) | Action Level<br>(ppb) | Result<br>(ppb)                                                                                         | Analyte      | Dilution<br>(1:n) | LOQ<br>(ppb) | Action Level<br>(ppb) | Result<br>(ppb)     |
|--------------|-------------------|--------------|-----------------------|---------------------------------------------------------------------------------------------------------|--------------|-------------------|--------------|-----------------------|---------------------|
| Aflatoxin B1 | 9.526             | 6            | 20                    | <l0q< td=""><td>Aflatoxin B2</td><td>9.526</td><td>6</td><td>20</td><td><l0q< td=""></l0q<></td></l0q<> | Aflatoxin B2 | 9.526             | 6            | 20                    | <l0q< td=""></l0q<> |
| Aflatoxin G1 | 9.526             | 6            | 20                    | <l0q< td=""><td>Aflatoxin G2</td><td>9.526</td><td>6</td><td>20</td><td><l0q< td=""></l0q<></td></l0q<> | Aflatoxin G2 | 9.526             | 6            | 20                    | <l0q< td=""></l0q<> |
| Ochratoxin A | 9.526             | 12           | 20                    | <l0q< td=""><td></td><td></td><td></td><td></td><td></td></l0q<>                                        |              |                   |              |                       |                     |
|              |                   |              |                       |                                                                                                         |              |                   |              |                       |                     |

 Sample Prepared By: 1180
 Date: 2021-05-07 12:36:47
 Sample Analyzed By: 1180
 Date: 2021-05-07 16:36:48

 Batch Reviewed By: 1044
 Date: 2021-05-10 20:27:10
 Lab Batch #: AABH653-165
 Date: 2021-05-10 20:27:10

Xueli Gao

drul

Lab Toxicologist

 $\mathcal{O}_{\mathcal{C}}$ 

Aixia Sun Lab Director/Principal Scientist

Aixia Sun Lab Director/F D.H.Sc., M.Sc., B.Sc., MT (AAB)

17025





Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.



License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



### **Certificate of Analysis**

**Compliance Test** 

**Trulieve** 6749 Ben Bostic Rd Quincy, FL 32351

Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida

Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653

**Sampling Date:** 2021-05-06 **Lab Batch Date:** 2021-05-06 **Completion Date:** 2021-05-14

Initial Gross Weight:  $631.000 \, g$  Net Weight:  $67.200 \, g$ 

Seed to Sale # 29355\_0000398345

Number of Units: 18 Net Weight per Unit: 3733.333 mg



#### Pesticides FL V4

Specimen Weight: 157.460 mg

**Passed** (LCMS/GCMS)

| Dilution | Factor: | 9.526 |
|----------|---------|-------|
|----------|---------|-------|

| D.II.d.1.011.1.02.0 |                   |              |                    |                                                                                                                      |                         |                   |              |                    |                     |
|---------------------|-------------------|--------------|--------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|--------------|--------------------|---------------------|
| Analyte             | Dilution<br>(1:n) | LOQ<br>(ppb) | Action Level (ppb) | Result<br>(ppb)                                                                                                      | Analyte                 | Dilution<br>(1:n) | LOQ<br>(ppb) | Action Level (ppb) | Result<br>(ppb)     |
| Abamectin           | 9.526             | 28.23        | 100                | <l0q< td=""><td>Acephate</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></l0q<>                | Acephate                | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Acequinocyl         | 9.526             | 48           | 100                | <loq< td=""><td>Acetamiprid</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>             | Acetamiprid             | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Aldicarb            | 9.526             | 30           | 100                | <loq< td=""><td>Azoxystrobin</td><td>9.526</td><td>10</td><td>100</td><td><loq< td=""></loq<></td></loq<>            | Azoxystrobin            | 9.526             | 10           | 100                | <loq< td=""></loq<> |
| Bifenazate          | 9.526             | 30           | 100                | <l0q< td=""><td>Bifenthrin</td><td>9.526</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>              | Bifenthrin              | 9.526             | 30           | 100                | <l0q< td=""></l0q<> |
| Boscalid            | 9.526             | 10           | 100                | <l0q< td=""><td>Captan</td><td>9.526</td><td>30</td><td>700</td><td><loq< td=""></loq<></td></l0q<>                  | Captan                  | 9.526             | 30           | 700                | <loq< td=""></loq<> |
| Carbaryl            | 9.526             | 10           | 500                | <l0q< td=""><td>Carbofuran</td><td>9.526</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>              | Carbofuran              | 9.526             | 10           | 100                | <l0q< td=""></l0q<> |
| Chlorantraniliprole | 9.526             | 10           | 1000               | <l0q< td=""><td>Chlordane</td><td>9.526</td><td>10</td><td>100</td><td><loq< td=""></loq<></td></l0q<>               | Chlordane               | 9.526             | 10           | 100                | <loq< td=""></loq<> |
| Chlorfenapyr        | 9.526             | 30           | 100                | <l0q< td=""><td>Chlormequat Chloride</td><td>9.526</td><td>10</td><td>1000</td><td><l0q< td=""></l0q<></td></l0q<>   | Chlormequat Chloride    | 9.526             | 10           | 1000               | <l0q< td=""></l0q<> |
| Chlorpyrifos        | 9.526             | 30           | 100                | <l0q< td=""><td>Clofentezine</td><td>9.526</td><td>30</td><td>200</td><td><l0q< td=""></l0q<></td></l0q<>            | Clofentezine            | 9.526             | 30           | 200                | <l0q< td=""></l0q<> |
| Coumaphos           | 9.526             | 48           | 100                | <loq< td=""><td>Cyfluthrin</td><td>9.526</td><td>30</td><td>500</td><td><loq< td=""></loq<></td></loq<>              | Cyfluthrin              | 9.526             | 30           | 500                | <loq< td=""></loq<> |
| Cypermethrin        | 9.526             | 30           | 500                | <loq< td=""><td>Daminozide</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>              | Daminozide              | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Diazinon            | 9.526             | 30           | 100                | <loq< td=""><td>Dichlorvos</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>              | Dichlorvos              | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Dimethoate          | 9.526             | 30           | 100                | <loq< td=""><td>Dimethomorph</td><td>9.526</td><td>48</td><td>200</td><td><loq< td=""></loq<></td></loq<>            | Dimethomorph            | 9.526             | 48           | 200                | <loq< td=""></loq<> |
| Ethoprophos         | 9.526             | 30           | 100                | <loq< td=""><td>Etofenprox</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>              | Etofenprox              | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Etoxazole           | 9.526             | 30           | 100                | <loq< td=""><td>Fenhexamid</td><td>9.526</td><td>10</td><td>100</td><td><loq< td=""></loq<></td></loq<>              | Fenhexamid              | 9.526             | 10           | 100                | <loq< td=""></loq<> |
| Fenoxycarb          | 9.526             | 30           | 100                | <loq< td=""><td>Fenpyroximate</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>           | Fenpyroximate           | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Fipronil            | 9.526             | 30           | 100                | <loq< td=""><td>Flonicamid</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>              | Flonicamid              | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Fludioxonil         | 9.526             | 48           | 100                | <l0q< td=""><td>Hexythiazox</td><td>9.526</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>             | Hexythiazox             | 9.526             | 30           | 100                | <l0q< td=""></l0q<> |
| mazalil             | 9.526             | 30           | 100                | <l0q< td=""><td>Imidacloprid</td><td>9.526</td><td>30</td><td>400</td><td><l0q< td=""></l0q<></td></l0q<>            | Imidacloprid            | 9.526             | 30           | 400                | <l0q< td=""></l0q<> |
| Kresoxim Methyl     | 9.526             | 30           | 100                | <loq< td=""><td>Malathion</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>               | Malathion               | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Metalaxyl           | 9.526             | 10           | 100                | <loq< td=""><td>Methiocarb</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>              | Methiocarb              | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Methomyl            | 9.526             | 30           | 100                | <l0q< td=""><td>methyl-Parathion</td><td>9.526</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>        | methyl-Parathion        | 9.526             | 10           | 100                | <l0q< td=""></l0q<> |
| Mevinphos           | 9.526             | 10           | 100                | <l0q< td=""><td>Myclobutanil</td><td>9.526</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>            | Myclobutanil            | 9.526             | 30           | 100                | <l0q< td=""></l0q<> |
| Naled               | 9.526             | 30           | 250                | <l0q< td=""><td>Oxamyl</td><td>9.526</td><td>30</td><td>500</td><td><l0q< td=""></l0q<></td></l0q<>                  | Oxamyl                  | 9.526             | 30           | 500                | <l0q< td=""></l0q<> |
| Paclobutrazol       | 9.526             | 30           | 100                | <l0q< td=""><td>Pentachloronitrobenzene</td><td>9.526</td><td>10</td><td>150</td><td><l0q< td=""></l0q<></td></l0q<> | Pentachloronitrobenzene | 9.526             | 10           | 150                | <l0q< td=""></l0q<> |
| Permethrin          | 9.526             | 30           | 100                | <loq< td=""><td>Phosmet</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>                 | Phosmet                 | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Piperonylbutoxide   | 9.526             | 30           | 3000               | <loq< td=""><td>Prallethrin</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>             | Prallethrin             | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Propiconazole       | 9.526             | 30           | 100                | <l0q< td=""><td>Propoxur</td><td>9.526</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>                | Propoxur                | 9.526             | 30           | 100                | <l0q< td=""></l0q<> |
| Pyrethrins          | 9.526             | 30           | 500                | <loq< td=""><td>Pyridaben</td><td>9.526</td><td>30</td><td>200</td><td><loq< td=""></loq<></td></loq<>               | Pyridaben               | 9.526             | 30           | 200                | <loq< td=""></loq<> |
| Spinetoram          | 9.526             | 10           | 200                | <loq< td=""><td>Spino sad</td><td>9.526</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>               | Spino sad               | 9.526             | 30           | 100                | <loq< td=""></loq<> |
| Spiromesifen        | 9.526             | 30           | 100                | <l0q< td=""><td>Spirotetramat</td><td>9.526</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>           | Spirotetramat           | 9.526             | 30           | 100                | <l0q< td=""></l0q<> |
| Spiroxamine         | 9.526             | 30           | 100                | <loq< td=""><td>Tebuconazole</td><td>9.526</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></loq<>            | Tebuconazole            | 9.526             | 30           | 100                | <l0q< td=""></l0q<> |
| Thiacloprid         | 9.526             | 30           | 100                | <loq< td=""><td>Thiamethoxam</td><td>9.526</td><td>30</td><td>500</td><td><l0q< td=""></l0q<></td></loq<>            | Thiamethoxam            | 9.526             | 30           | 500                | <l0q< td=""></l0q<> |
| Trifloxystrobin     | 9.526             | 30           | 100                | <l0q< td=""><td></td><td></td><td></td><td></td><td></td></l0q<>                                                     |                         |                   |              |                    |                     |

Sample Prepared By: 1180 Date: 2021-05-07 12:36:47 Sample Analyzed By: 1180 Date: 2021-05-07 16:36:48 Batch Reviewed By: 1044 Date: 2021-05-10 20:27:10 Lab Batch #: AABH653-191 Date: 2021-05-10 20:27:10

Xueli Gao Ph D DART Lab Toxicologist

Lab Director/Principal Scientist

Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)



and





Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.



License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



# **Certificate of Analysis**

#### **Compliance Test**

**Trulieve** 6749 Ben Bostic Rd Quincy, FL 32351

Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida

Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653

Sampling Date: 2021-05-06 Lab Batch Date: 2021-05-06 Completion Date: 2021-05-14

Initial Gross Weight: 631.000 g Net Weight: 67.200 g

Seed to Sale # 29355\_0000398345

Number of Units: 18 Net Weight per Unit: 3733.333 mg



#### Moisture

Net Weight: 67.200 g

**Passed** (Moisture Meter)



| Analyte  |  | Action Lev |   | Result<br>(%) |  |  |  |
|----------|--|------------|---|---------------|--|--|--|
| Moisture |  | 1          | 5 | 11.390        |  |  |  |
|          |  |            |   |               |  |  |  |

Sample Prepared By: 1146 Date: 2021-05-06 17:02:56 Sample Analyzed By: 1146 Date: 2021-05-06 21:02:56 tch Reviewed By: 1092 Date: 2021-05-08 22:21:21 Lab Batch #: AABH653-10 Date: 2021-05-08 22:21:21



#### Water Activity

Specimen Weight: 0.500 g

**Passed** (Water Activity Analyzer)

Dilution Factor: 1.000

| Analyte                  | Action Level (aw)         | Result<br>(aw)           |                           |
|--------------------------|---------------------------|--------------------------|---------------------------|
| Water Activity           | 0.65                      | 0.506                    |                           |
| Sample Prepared By: 1146 | Date: 2021-05-06 16:51:26 | Sample Analyzed By: 1146 | Date: 2021-05-06 20:51:27 |
| Batch Reviewed By: 1092  | Date: 2021-05-08 22:17:23 | Lab Batch #: AABH653-11  | Date: 2021-05-08 22:17:23 |



#### Pathogenic SAE (qPCR)

Specimen Weight: 234.710 mg

**Passed** (qPCR)

#### Dilution Factor: 1.000

| Analyte                                      | Action Level<br>(cfu/g)   | Result<br>(cfu/g)        |                           | Analyte              | Action Level<br>(cfu/g) | Result<br>(cfu/g)                |  |
|----------------------------------------------|---------------------------|--------------------------|---------------------------|----------------------|-------------------------|----------------------------------|--|
| Aspergillus (Flavus, Fumi<br>Niger, Terreus) | gatus, 1                  | Absence in 1g            |                           | E.Coli<br>Salmonella | 1                       | Absence in 1 g<br>Absence in 1 g |  |
| Sample Prepared By: 1142                     | Date: 2021-05-07 19:15:06 | Sample Analyzed By: 1142 | Date: 2021-05-07 23:15:06 |                      |                         |                                  |  |
| Batch Reviewed By: 1142                      | Date: 2021-05-07 23:28:39 | Lab Batch #: AABH653-89  | Date: 2021-05-07 23:28:39 |                      |                         |                                  |  |

drul Xueli Gao

Lab Toxicologist Ph D DART

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)







Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.



License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



# **Certificate of Analysis**

**Compliance Test** 

**Trulieve** 6749 Ben Bostic Rd Quincy, FL 32351

Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

Seed to Sale # 29355\_0000398345 Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida

Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653

Sampling Date: 2021-05-06 Lab Batch Date: 2021-05-06 Completion Date: 2021-05-14

Initial Gross Weight: 631.000 g Net Weight: 67.200 g

Number of Units: 18 Net Weight per Unit: 3733.333 mg



#### **Total Yeast and Mold**

Specimen Weight: 10066.890 mg

**Passed** (qPCR)

| Dilation ractor. 1.000   |                           |                          |                           |
|--------------------------|---------------------------|--------------------------|---------------------------|
| Analyte                  | Action Level<br>(cfu/g)   |                          | Result                    |
| Total Yeast/Mold         | 100000                    |                          | Passed                    |
| Sample Prepared By: 1142 | Date: 2021-05-07 19:39:03 | Sample Analyzed By: 1142 | Date: 2021-05-07 23:39:03 |
| Ratch Paviewed By: 11/12 | Date: 2021-05-07 23:23:28 | Lah Ratch #: AARH653-218 | Date: 2021-05-07 23:23:28 |

Lab Batch #: AABH653-17



#### Filth and Foreign Material

Date: 2021-05-10 14:19:19

Net Weight: 67.200 g

**Passed** (Visual/Microscope)

| Dilution | Factor: | 1 000 |  |
|----------|---------|-------|--|
|          |         |       |  |

Batch Reviewed By: 1092

| Analyte                  | Action Level<br>(%)       | Result<br>(%)            |                           | Analyte | Action Level<br>(mg/Kg) | Result<br>(mg/Kg) |  |
|--------------------------|---------------------------|--------------------------|---------------------------|---------|-------------------------|-------------------|--|
| Covered Area             | 10                        | 0.000                    |                           | Feces   | 0.5                     | 0.000             |  |
| Weight %                 | 1                         | 0.000                    |                           |         |                         |                   |  |
| Sample Prepared By: 1066 | Date: 2021-05-06 07:13:02 | Sample Analyzed By: 1066 | Date: 2021-05-06 11:13:02 |         |                         |                   |  |

Date: 2021-05-10 14:19:19

drul Xueli Gao Ph D DART

Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)





Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Milligram per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.



License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068



FINP-TruFlowr-3.5G-Wedding Crasher Sample Matrix: CANNABIS (MMTC's) Flower & Plants (Inhalation - Heated)



# **Certificate of Analysis**

**Compliance Test** 

**Trulieve** 6749 Ben Bostic Rd Quincy, FL 32351

Order # TRU210505-120015 Order Date: 2021-05-05 Sample # AABH653

Batch # 29355\_0000398345 Batch Date: 2021-05-05 Extracted From: N/A Sampling Method: MSP 7.3.1

**Sampling Date:** 2021-05-06 **Lab Batch Date:** 2021-05-06 **Completion Date:** 2021-05-14

Seed to Sale # 29355\_0000398345 Lot ID: 29345\_0000398345 Cultivars: N/A Test Reg State: Florida

Initial Gross Weight: 631.000 g Net Weight: 67.200 g

Cultivation Facility: TRULIEVE Cultivation Date: 2021-02-21 Production Facility: TRULIEVE Production Date: 2021-05-05

Number of Units: 18 Net Weight per Unit: 3733.333 mg

#### **Total Contaminant Load**

**Passed** 

Heavy Metals, Pesticides

drul Xueli Gao Ph D DART

 $\mathcal{O}_{\mathcal{C}}$ Lab Toxicologist

Lab Director/Principal Scientist

Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)





Definitions and Abbreviations used in this report: \*Total CBD = CBD + (CBD-A \* 0.877), \*Total THC = THCA-A \* 0.877 + Delta 9 THC, \*CBG Total = (CBGA \* 0.877) + CBG, \*CBN Total = (CBNA \* 0.877) + CBN, \*Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, \*Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, \*Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Millilier, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/kg) = Milligram per Kilogram

Total Contaminant Load (TCL) - The sum of all Heavy Metals and Agricultural Agents present above the LOQ, but below the Acceptable Limit.